Application of Long-Short-Term-Memory Recurrent Neural Networks to Forecast Wind Speed

Author:

Elsaraiti MeftahORCID,Merabet AdelORCID

Abstract

Forecasting wind speed is one of the most important and challenging problems in the wind power prediction for electricity generation. Long short-term memory was used as a solution to short-term memory to address the problem of the disappearance or explosion of gradient information during the training process experienced by the recurrent neural network (RNN) when used to study time series. In this study, this problem is addressed by proposing a prediction model based on long short-term memory and a deep neural network developed to forecast the wind speed values of multiple time steps in the future. The weather database in Halifax, Canada was used as a source for two series of wind speeds per hour. Two different seasons spring (March 2015) and summer (July 2015) were used for training and testing the forecasting model. The results showed that the use of the proposed model can effectively improve the accuracy of wind speed prediction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. A new strategy for wind speed forecasting using artificial intelligent methods

2. Time Series Analysis: Forecasting and Control;Box,2015

3. RNN based solar radiation forecasting using adaptive learning rate;Yadav,2013

4. Long Short-Term Memory

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3