A Novel Improved Variational Mode Decomposition-Temporal Convolutional Network-Gated Recurrent Unit with Multi-Head Attention Mechanism for Enhanced Photovoltaic Power Forecasting

Author:

Fu Hua1,Zhang Junnan1,Xie Sen2

Affiliation:

1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

2. Institute of Intelligence Science and Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China

Abstract

Photovoltaic (PV) power forecasting plays a crucial role in optimizing renewable energy integration into the grid, necessitating accurate predictions to mitigate the inherent variability of solar energy generation. We propose a novel forecasting model that combines improved variational mode decomposition (IVMD) with the temporal convolutional network-gated recurrent unit (TCN-GRU) architecture, enriched with a multi-head attention mechanism. By focusing on four key environmental factors influencing PV output, the proposed IVMD-TCN-GRU framework targets a significant research gap in renewable energy forecasting methodologies. Initially, leveraging the sparrow search algorithm (SSA), we optimize the parameters of VMD, including the mode component K-value and penalty factor, based on the minimum envelope entropy principle. The optimized VMD then decomposes PV power, while the TCN-GRU model harnesses TCN’s proficiency in learning local temporal features and GRU’s capability in rapidly modeling sequence data, while leveraging multi-head attention to better utilize the global correlation information within sequence data. Through this design, the model adeptly captures the correlations within time series data, demonstrating superior performance in prediction tasks. Subsequently, the SSA is employed to optimize GRU parameters, and the decomposed PV power mode components and environmental feature attributes are inputted into the TCN-GRU neural network. This facilitates dynamic temporal modeling of multivariate feature sequences. Finally, the predicted values of each component are summed to realize PV power forecasting. Validation using real data from a PV station corroborates that the novel model demonstrates a substantial reduction in RMSE and MAE of up to 55.1% and 54.5%, respectively, particularly evident in instances of pronounced photovoltaic power fluctuations during inclement weather conditions. The proposed method exhibits marked improvements in accuracy compared to traditional PV power prediction methods, underscoring its significance in enhancing forecasting precision and ensuring the secure scheduling and stable operation of power systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3