Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network
Author:
Publisher
Elsevier BV
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Reference30 articles.
1. Pan KK, Qian Z, Chen NY. Probabilistic short-term wind power forecasting using sparse bayesian learning and NWP. Hindawi Publishing Corporation Mathematical Problems in Engineering; 2015 [Article ID: 785215].
2. A hybrid model based on smooth transition periodic autoregressive and Elman artificial neural network for wind speed forecasting of the Hebei region in China;Qin;Int J Green Energy,2016
3. Linear and non-linear autoregressive models for short-term wind speed forecasting;Lydia;Energy Convers Manage,2016
4. A Gaussian process regression based hybrid approach for short-term wind speed prediction;Zhang;Energy Convers Manage,2016
5. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model;Cadenas;Renew Energy,2010
Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3DTCN-CBAM-LSTM short-term power multi-step prediction model for offshore wind power based on data space and multi-field cluster spatio-temporal correlation;Applied Energy;2024-12
2. A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction;Applied Energy;2024-09
3. An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index;Natural Hazards;2024-07-03
4. Short-term wind farm cluster power point-interval prediction based on graph spatio-temporal features and S-Stacking combined reconstruction;Heliyon;2024-07
5. An integrated prediction model based on meta ensemble learning for short‐term wind speed forecasting;IET Renewable Power Generation;2024-06-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3