A hybrid model based on smooth transition periodic autoregressive and Elman artificial neural network for wind speed forecasting of the Hebei region in China
Author:
Funder
the National Natural Science Foundation of China
Publisher
Informa UK Limited
Subject
Renewable Energy, Sustainability and the Environment
Link
http://www.tandfonline.com/doi/pdf/10.1080/15435075.2014.961462
Reference49 articles.
1. Wind energy technology and current status: a review
2. Short-term forecasting of wind speed and related electrical power
3. A Statistical Analysis of Wind Speed Distributions in the Area of Western Greece
4. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
5. Large Sample Properties of Parameter Estimates for Periodic ARMA Models
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-term wind speed forecasts through hybrid model based on improved variational mode decomposition;International Journal of Green Energy;2024-02-02
2. Wind turbine output power forecasting based on temporal convolutional neural network and complete ensemble empirical mode decomposition with adaptive noise;International Journal of Green Energy;2023-01-30
3. A novel hybrid machine learning model for short-term wind speed prediction in inner Mongolia, China;Renewable Energy;2021-12
4. Analysis and enhanced prediction of the Spanish Electricity Network through Big Data and Machine Learning techniques;International Journal of Approximate Reasoning;2021-06
5. An Ensemble Model of Wind Speed Forecasting Based on Variational Mode Decomposition and Bare-Bones Fireworks Algorithm;Mathematical Problems in Engineering;2021-03-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3