Hypoglycemia event prediction from CGM using ensemble learning

Author:

Fleischer Jesper,Hansen Troels Krarup,Cichosz Simon Lebech

Abstract

This work sought to explore the potential of using standalone continuous glucose monitor (CGM) data for the prediction of hypoglycemia utilizing a large cohort of type 1 diabetes patients during free-living. We trained and tested an algorithm for the prediction of hypoglycemia within 40 minutes on 3.7 million CGM measurements from 225 patients using ensemble learning. The algorithm was also validated using 11.5 million synthetic CGM data. The results yielded a receiver operating characteristic area under the curve (ROC AUC) of 0.988 and a precision-recall area under the curve (PR AUC) of 0.767. In an event-based analysis for predicting hypoglycemic events, the algorithm had a sensitivity of 90%, a lead-time of 17.5 minutes and a false-positive rate of 38%. In conclusion, this work demonstrates the potential of using ensemble learning to predict hypoglycemia, using only CGM data. This could help alarm patients of a future hypoglycemic event so countermeasures can be initiated.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference24 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3