Prediction of Hypoglycemia From Continuous Glucose Monitoring in Insulin-Treated Patients With Type 2 Diabetes Using Transfer Learning on Type 1 Diabetes Data: A Deep Transfer Learning Approach

Author:

Thomsen Helene B.1ORCID,Jakobsen Mike M.1,Hecht-Pedersen Nikolaj1,Jensen Morten Hasselstrøm12ORCID,Kronborg Thomas1ORCID

Affiliation:

1. Department of Health Science and Technology, Aalborg University, Gistrup, Denmark

2. Data Science, Novo Nordisk A/S, Søborg, Denmark

Abstract

Background: Hypoglycemia is common in insulin-treated type 2 diabetes (T2D) patients, which can lead to decreased quality of life or premature death. Deep learning models offer promise of accurate predictions, but data scarcity poses a challenge. This study aims to develop a deep learning model utilizing transfer learning to predict hypoglycemia. Methods: Continuous glucose monitoring (CGM) data from 226 patients with type 1 diabetes (T1D) and 180 patients with T2D were utilized. Data were structured into one-hour samples and labeled as hypoglycemia or not depending on whether three consecutive CGM values were below 3.9 [mmol/L] (70 mg/dL) one hour after the sample. A convolutional neural network (CNN) was pre-trained with the T1D data set and subsequently fitted using a T2D data set, all while being optimized toward maximizing the area under the receiver operating characteristics curve (AUC) value, and it was externally validated on a separate T2D data set. Results: The developed model was externally validated with 334 711 one-hour CGM samples, of which 15 695 (4.69%) were labeled as hypoglycemic. The model achieved an AUC of 0.941 and a positive predictive value of 40.49% at a specificity of 95% and a sensitivity of 69.16%. Conclusions: The transfer learned CNN model showed promising performance in predicting hypoglycemic episodes and with slightly better results than a non-transfer learned CNN model.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fear of Hypoglycemia and Diabetes Distress: Expected Reduction by Glucose Prediction;Journal of Diabetes Science and Technology;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3