Author:
Wahlin Karl J.,Cheng Jie,Jurlina Shawna L.,Jones Melissa K.,Dash Nicholas R.,Ogata Anna,Kibria Nawal,Ray Sunayan,Eldred Kiara C.,Kim Catherine,Heng Jacob S.,Phillips Jenny,Johnston Robert J.,Gamm David M.,Berlinicke Cynthia,Zack Donald J.
Abstract
Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide “retina-like” structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.
Funder
National Eye Institute
California Institute for Regenerative Medicine
Vision of Children Foundation
Knights Templar Eye Foundation
Edward N. and Della L. Thome Memorial Foundation
Subject
Cell Biology,Developmental Biology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献