Abstract
AbstractRetinal ganglion cells (RGCs) lack regenerative capacity in mammals, and their degeneration in glaucoma leads to irreversible blindness. The transplantation of stem cell-derived RGCs lacks clinically relevant effect due to insufficient survival and integration of donor cells. We hypothesize that the retinal microenvironment plays a critical role in this process, and we can engineer a more acceptable setting for transplantation. Since the adult mammalian retina does not have regenerative capacity, we turned to the developing human retina to reconstruct cell-cell interactions at a single-cell level. We established a human fetal retina atlas by integrating currently available single-cell RNA sequencing datasets of human fetal retinas into a unified resource. We align RGC transcriptomes in pseudotime to map RGC developmental fate trajectories against the broader timeline of retinal development. Through this analysis, we identified brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as key factors in RGC survival, highly expressed during fetal development but significantly reduced in adulthood despite the persistence of their receptors. To demonstrate the practical application of these findings, we show that using a slow-release formulation of BDNF and GDNF enhances RGC differentiation, survival, and function in vitro and improves RGC transplantation outcomes in a mouse model. BNDF/GDNF co-treatment not only increased survival and coverage of donor RGCs within the retina but also showed neuroprotective effects on host RGCs, preserving retinal function in a model of optic neuropathy. Altogether, our findings suggest that manipulating the retinal microenvironment with slow-release neurotrophic factors holds promise in regenerative medicine for treating glaucoma and other optic neuropathies. This approach not only improves donor cell survival and integration but also provides a neuroprotective benefit to host cells, indicating a significant advancement for glaucoma therapies.
Publisher
Cold Spring Harbor Laboratory