Piezo1 channels mediate vasorelaxation of uterine arteries from pseudopregnant rats

Author:

Arishe Olufunke O.,McKenzie Jaine,Dela Justina Vanessa,Dos Anjos Moraes Raiana,Webb R. Clinton,Priviero Fernanda

Abstract

Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy.Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS).Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent.Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3