Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function

Author:

Bird Ian M.12,Zhang Lubo3,Magness Ronald R.124

Affiliation:

1. University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Perinatal Research Laboratories and the

2. Department of Pediatrics and

3. Center for Perinatal Biology, Department of Pharmacology and Physiology, Loma Linda University School of Medicine, Loma Linda, California 92350

4. Animal Sciences, Madison, Wisconsin 53715; and

Abstract

The last 10 years has seen a dramatic increase in our understanding of the mechanisms underlying the pregnancy-specific adaptation in cardiovascular function in general and the dramatic changes that occur in uterine artery endothelium in particular to support the growing fetus. The importance of these changes is clear from a number of studies linking restriction of uterine blood flow (UBF) and/or endothelial dysfunction and clinical conditions such as intrauterine growth retardation (IUGR) and/or preeclampsia in both humans and animal models; these topics are covered only briefly here. The recent developments that prompts this review are twofold. The first is advances in an understanding of the cell signaling processes that regulate endothelial nitric oxide synthase (eNOS) in particular (Govers R and Rabelink TJ. Am J Physiol Renal Physiol 280: F193–F206, 2001). The second is the emerging picture that uterine artery (UA) endothelial cell production of nitric oxide (NO) as well as prostacyclin (PGI2) may be as much a consequence of cellular reprogramming at the level of cell signaling as due to tonic stimuli inducing changes in the level of expression of eNOS or the enzymes of the PGI2 biosynthetic pathway (cPLA2, COX-1, PGIS). In reviewing just how we came to this conclusion and outlining the implications of such a finding, we draw mostly on data from ovine or human studies, with reference to other species only where directly relevant.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3