Pollinator movement activity influences genetic diversity and differentiation of spatially isolated populations of clonal forest herbs

Author:

Feigs Jannis Till,Holzhauer Stephanie I. J.,Huang Siyu,Brunet Jörg,Diekmann Martin,Hedwall Per-Ola,Kramp Katja,Naaf Tobias

Abstract

In agricultural landscapes, forest herbs live in small, spatially isolated forest patches. For their long-term survival, their populations depend on animals as genetic linkers that provide pollen- or seed-mediated gene flow among different forest patches. However, whether insect pollinators serve as genetic linkers among spatially isolated forest herb populations in agricultural landscapes remains to be shown. Here, we used population genetic methods to analyze: (A) the genetic diversity and genetic differentiation of populations of two common, slow-colonizing temperate forest herb species [Polygonatum multiflorum (L.) All. and Anemone nemorosa L.] in spatially isolated populations within three agricultural landscapes in Germany and Sweden and (B) the movement activity of their most relevant associated pollinator species, i.e., the bumblebee Bombus pascuorum (Scopoli, 1,763) and the hoverfly Melanostoma scalare (Fabricus, 1,794), respectively, which differ in their mobility. We tested whether the indicated pollinator movement activity affected the genetic diversity and genetic differentiation of the forest herb populations. Bumblebee movement indicators that solely indicated movement activity between the forest patches affected both genetic diversity and genetic differentiation of the associated forest herb P. multiflorum in a way that can be explained by pollen-mediated gene flow among the forest herb populations. In contrast, movement indicators reflecting the total movement activity at a forest patch (including within-forest patch movement activity) showed unexpected effects for both plant-pollinator pairs that might be explained by accelerated genetic drift due to enhanced sexual reproduction. Our integrated approach revealed that bumblebees serve as genetic linkers of associated forest herb populations, even if they are more than 2 km apart from each other. No such evidence was found for the forest associated hoverfly species which showed significant genetic differentiation among forest patches itself. Our approach also indicated that a higher within-forest patch movement activity of both pollinator species might enhance sexual recruitment and thus diminishes the temporal buffer that clonal growth provides against habitat fragmentation effects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3