A safe agricultural space for biodiversity

Author:

García-Vega Diego,Dumas Patrice,Prudhomme Rémi,Kremen Claire,Aubert Pierre-Marie

Abstract

Agriculture is the main driver of the rapid collapse of biodiversity, upon which all life on Earth, including agricultural production, depends. As we face the challenge of feeding a growing human population under a changing climate regime, the pressure on biodiversity is expected to further intensify. While the potential to expand and improve natural habitats for biodiversity conservation has been widely explored in large-scale scenarios of agricultural systems, the critical role of agricultural landscapes’ management on halting the loss of biodiversity remains unexplored at this scale. We argue that, to achieve an effective conservation of biodiversity (both natural and agricultural), the combined multivariate effects of agriculture on biodiversity must be accounted for, including its surface area as well as its management. Based on a literature review, we identified the main biodiversity pressures stemming from agriculture: land-use change, contribution to climate change, water withdrawal, pesticide pollution, nutrient (nitrogen and phosphorus) pollution, and landscape and farm-scale simplification (of croplands and pastures). For each one, we proposed a critical boundary, based on reviews of studies covering a range of taxa, biodiversity metrics, and biomes, below or above which negative impacts on biodiversity are minimized or positive effects arise. Implemented simultaneously, the identified boundaries would integrate biodiversity conservation within and across farmlands and minimize agriculture’s far-reaching impacts on biodiversity. We present a framework called “agricultural boundaries for biodiversity” that will allow to explore the potential of developing agricultural systems that effectively reconcile food production and biodiversity conservation at large scales.

Funder

French National Research Agency

European Union

Université Paris-Saclay

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3