Affiliation:
1. Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
2. Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Lomma Sweden
3. Research Unit Ecology and Dynamics of Anthropized Systems University of Picardie Jules Verne Amiens Cedex France
4. Forest & Nature Lab, Department of Environment Ghent University Gontrode Belgium
5. Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2 University of Bremen Bremen Germany
6. Institute of Ecology and Earth Science University of Tartu Tartu Estonia
Abstract
AbstractDue to multiple land‐cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present‐day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi‐landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18–338 years). We studied the impact on three common slow‐colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long‐distance pollinators), Anemone nemorosa (outcrossing, short‐distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity (Ho) but a similar level of allelic richness (Ar) and expected heterozygosity (He) as younger populations, except for A. nemorosa, which exhibited higher Ar and He in younger populations. As populations aged, their pairwise genetic differentiation measured by DPS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations (G"ST) or inconsistency among three species (cGD). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long‐term response to land‐cover change.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献