Real-Time Path Planning for Robot Using OP-PRM in Complex Dynamic Environment

Author:

Ye Lingjian,Chen Jinbao,Zhou Yimin

Abstract

During task execution, the autonomous robots would likely pass through many narrow corridors along with mobile obstacles in dynamically complex environments. In this case, the off-line path planning algorithm is rather difficult to be directly implemented to acquire the available path in real-time. Hence, this article proposes a probabilistic roadmap algorithm based on the obstacle potential field sampling strategy to tackle the online path planning, called Obstacle Potential field-Probabilistic Roadmap Method (OP-PRM). The obstacle potential field is introduced to determine the obstacle area so as to construct the potential linked roadmap. Then the specific range around the obstacle boundary is justified as the target sampling area. Based on this obstacle localization, the effectiveness of the sampling points falling into the narrow corridors can be increased greatly for feasible roadmap construction. Furthermore, an incremental heuristic D* Lite algorithm is applied to search the shortest paths between the starting point and the target point on the roadmap. Simulation experiments demonstrate that the OP-PRM path planning algorithm can enable robots to search the optimal path fast from the starting point to the destination and effectively cross narrow corridors in complex dynamic environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Shenzhen Fundamental Research Program

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3