Review of Autonomous Path Planning Algorithms for Mobile Robots

Author:

Qin Hongwei123,Shao Shiliang23ORCID,Wang Ting23,Yu Xiaotian234,Jiang Yi234,Cao Zonghan123

Affiliation:

1. School of Software, Shenyang University of Technology, Shenyang 110870, China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Mobile robots, including ground robots, underwater robots, and unmanned aerial vehicles, play an increasingly important role in people’s work and lives. Path planning and obstacle avoidance are the core technologies for achieving autonomy in mobile robots, and they will determine the application prospects of mobile robots. This paper introduces path planning and obstacle avoidance methods for mobile robots to provide a reference for researchers in this field. In addition, it comprehensively summarizes the recent progress and breakthroughs of mobile robots in the field of path planning and discusses future directions worthy of research in this field. We focus on the path planning algorithm of a mobile robot. We divide the path planning methods of mobile robots into the following categories: graph-based search, heuristic intelligence, local obstacle avoidance, artificial intelligence, sampling-based, planner-based, constraint problem satisfaction-based, and other algorithms. In addition, we review a path planning algorithm for multi-robot systems and different robots. We describe the basic principles of each method and highlight the most relevant studies. We also provide an in-depth discussion and comparison of path planning algorithms. Finally, we propose potential research directions in this field that are worth studying in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3