Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks

Author:

Laschowski Brokoslaw,McNally William,Wong Alexander,McPhee John

Abstract

Robotic leg prostheses and exoskeletons can provide powered locomotor assistance to older adults and/or persons with physical disabilities. However, the current locomotion mode recognition systems being developed for automated high-level control and decision-making rely on mechanical, inertial, and/or neuromuscular sensors, which inherently have limited prediction horizons (i.e., analogous to walking blindfolded). Inspired by the human vision-locomotor control system, we developed an environment classification system powered by computer vision and deep learning to predict the oncoming walking environments prior to physical interaction, therein allowing for more accurate and robust high-level control decisions. In this study, we first reviewed the development of our “ExoNet” database—the largest and most diverse open-source dataset of wearable camera images of indoor and outdoor real-world walking environments, which were annotated using a hierarchical labeling architecture. We then trained and tested over a dozen state-of-the-art deep convolutional neural networks (CNNs) on the ExoNet database for image classification and automatic feature engineering, including: EfficientNetB0, InceptionV3, MobileNet, MobileNetV2, VGG16, VGG19, Xception, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, and DenseNet201. Finally, we quantitatively compared the benchmarked CNN architectures and their environment classification predictions using an operational metric called “NetScore,” which balances the image classification accuracy with the computational and memory storage requirements (i.e., important for onboard real-time inference with mobile computing devices). Our comparative analyses showed that the EfficientNetB0 network achieves the highest test accuracy; VGG16 the fastest inference time; and MobileNetV2 the best NetScore, which can inform the optimal architecture design or selection depending on the desired performance. Overall, this study provides a large-scale benchmark and reference for next-generation environment classification systems for robotic leg prostheses and exoskeletons.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference58 articles.

1. ImageNet: A large-scale hierarchical image database,;Deng,2009

2. Visual terrain identification and surface inclination estimation for improving human locomotion with a lower-limb prosthetic,;Diaz,2018

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3