Simulation-Driven Universal Surrogates of Coupled Mechanical Systems: Real-Time Simulation of a Forestry Crane

Author:

Khadim Qasim1ORCID,Kurvinen Emil12,Mikkola Aki3,Orzechowski Grzegorz3ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Oulu , Oulu 90570, Finland

2. University of Oulu

3. Department of Mechanical Engineering, LUT University , Lappeenranta 53850, Finland

Abstract

Abstract Preparing simulation-driven surrogates for a coupled mechanical system can be challenging because the associated mechanical and actuator dynamics demand high-fidelity numerical solutions. Proposed here is a universal hydraulic surrogate (UHS), which can provide solutions to high-fidelity mechanical systems with a universal actuator in a surrogate-assisted monolithic approach. The UHS acts as an alternative to the standard lumped fluid theory by eliminating the hydraulic pressures differential equations. A surrogate-assisted universal actuator uses an approximated model to define hydraulic force in high-fidelity mechanical systems. The approximated force model was developed through training against the dynamics of a one-dimensional (1D) hydraulic cylinder and spring-damper. A covariance matrix adaption evolutionary strategy (CMA-ES) was used as an optimization algorithm to minimize differences between the standard dynamics and UHS approaches at the position and velocity levels. The robustness of resulting UHS was validated to predict the behaviors of the simple four-bar mechanism and the forestry crane. The focus was on numerical accuracy and computational efficiency. The maximum percent normalized root mean square error (PN-RMSE) between the states of the approximated force model and lumped fluid theory were approximately 2.04% and 6.95%, respectively. The proposed method was approximately 52 times faster than the standard lumped fluid theory method. By providing accurate predictions outside the training data, the simulation-driven UHS promises better computational performance leading to real-time simulation solutions for the coupled mechanical systems. The UHS can be applied in simulation, optimization, control, state and parameter estimation, and Artificial Intelligence (AI) implementations for coupled mechanical systems.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3