StairNet: visual recognition of stairs for human–robot locomotion

Author:

Kurbis Andrew Garrett,Kuzmenko Dmytro,Ivanyuk-Skulskiy Bogdan,Mihailidis Alex,Laschowski Brokoslaw

Abstract

AbstractHuman–robot walking with prosthetic legs and exoskeletons, especially over complex terrains, such as stairs, remains a significant challenge. Egocentric vision has the unique potential to detect the walking environment prior to physical interactions, which can improve transitions to and from stairs. This motivated us to develop the StairNet initiative to support the development of new deep learning models for visual perception of real-world stair environments. In this study, we present a comprehensive overview of the StairNet initiative and key research to date. First, we summarize the development of our large-scale data set with over 515,000 manually labeled images. We then provide a summary and detailed comparison of the performances achieved with different algorithms (i.e., 2D and 3D CNN, hybrid CNN and LSTM, and ViT networks), training methods (i.e., supervised learning with and without temporal data, and semi-supervised learning with unlabeled images), and deployment methods (i.e., mobile and embedded computing), using the StairNet data set. Finally, we discuss the challenges and future directions. To date, our StairNet models have consistently achieved high classification accuracy (i.e., up to 98.8%) with different designs, offering trade-offs between model accuracy and size. When deployed on mobile devices with GPU and NPU accelerators, our deep learning models achieved inference speeds up to 2.8 ms. In comparison, when deployed on our custom-designed CPU-powered smart glasses, our models yielded slower inference speeds of 1.5 s, presenting a trade-off between human-centered design and performance. Overall, the results of numerous experiments presented herein provide consistent evidence that StairNet can be an effective platform to develop and study new deep learning models for visual perception of human–robot walking environments, with an emphasis on stair recognition. This research aims to support the development of next-generation vision-based control systems for robotic prosthetic legs, exoskeletons, and other mobility assistive technologies.

Funder

AGE-WELL

Vector Institute

The Schroeder Institute for Brain Innovation and Recovery

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3