YOLOv7-CSAW for maritime target detection

Author:

Zhu Qiang,Ma Ke,Wang Zhong,Shi Peibei

Abstract

IntroductionThe issue of low detection rates and high false negative rates in maritime search and rescue operations has been a critical problem in current target detection algorithms. This is mainly due to the complex maritime environment and the small size of most targets. These challenges affect the algorithms' robustness and generalization.MethodsWe proposed YOLOv7-CSAW, an improved maritime search and rescue target detection algorithm based on YOLOv7. We used the K-means++ algorithm for the optimal size determination of prior anchor boxes, ensuring an accurate match with actual objects. The C2f module was incorporated for a lightweight model capable of obtaining richer gradient flow information. The model's perception of small target features was increased with the non-parameter simple attention module (SimAM). We further upgraded the feature fusion network to an adaptive feature fusion network (ASFF) to address the lack of high-level semantic features in small targets. Lastly, we implemented the wise intersection over union (WIoU) loss function to tackle large positioning errors and missed detections.ResultsOur algorithm was extensively tested on a maritime search and rescue dataset with YOLOv7 as the baseline model. We observed a significant improvement in the detection performance compared to traditional deep learning algorithms, with a mean average precision (mAP) improvement of 10.73% over the baseline model.DiscussionYOLOv7-CSAW significantly enhances the accuracy and robustness of small target detection in complex scenes. This algorithm effectively addresses the common issues experienced in maritime search and rescue operations, specifically improving the detection rates and reducing false negatives, proving to be a superior alternative to current target detection algorithms.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference41 articles.

1. Coverage path planning for maritime search and rescue using reinforcement learning;Ai;Ocean Eng.,2021

2. “High-performance large-scale image recognition without normalization,”;Brock;International Conference on Machine Learning: PMLR,2021

3. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations;Cho;Comput. Industr. Eng.,2021

4. A mathematical model for tactical aerial search and rescue fleet and operation planning;Ferrari;Int. J. Disast. Risk Reduct.,2020

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3