Research and Application of Panoramic Visual Perception-Assisted Navigation Technology for Ships

Author:

Wang Chiming1ORCID,Cai Xiaocong1,Li Yanan1,Zhai Runxuan1,Wu Rongjiong1,Zhu Shunzhi1,Guan Liangqing2,Luo Zhiqiang2,Zhang Shengchao3,Zhang Jianfeng3

Affiliation:

1. School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Fujian Fuchuan Marine Engineering Technology Research Institute Co., Ltd., Fuzhou 350501, China

3. Xiamen Port Shipping Co., Ltd., Xiamen 361012, China

Abstract

In response to challenges such as narrow visibility for ship navigators, limited field of view from a single camera, and complex maritime environments, this study proposes panoramic visual perception-assisted navigation technology. The approach includes introducing a region-of-interest search method based on SSIM and an elliptical weighted fusion method, culminating in the development of the ship panoramic visual stitching algorithm SSIM-EW. Additionally, the YOLOv8s model is improved by increasing the size of the detection head, introducing GhostNet, and replacing the regression loss function with the WIoU loss function, and a perception model yolov8-SGW for sea target detection is proposed. The experimental results demonstrate that the SSIM-EW algorithm achieves the highest PSNR indicator of 25.736, which can effectively reduce the stitching traces and significantly improve the stitching quality of panoramic images. Compared to the baseline model, the YOLOv8-SGW model shows improvements in the P, R, and mAP50 of 1.5%, 4.3%, and 2.3%, respectively, its mAP50 is significantly higher than that of other target detection models, and the detection ability of small targets at sea has been significantly improved. Implementing these algorithms in tugboat operations at ports enhances the fields of view of navigators, allowing for the identification of targets missed by AISs and radar systems, thus ensuring operational safety and advancing the level of vessel intelligence.

Funder

Green and Intelligent Ship in the Fujian region

Xiamen Ocean and Fishery Development Special Fund Project

Next-Generation Integrated Intelligent Terminal for Fishing Boats

Research on Key Technologies for Topological Reconstruction

Graphical Expression of Next-Generation Electronic Nautical Charts

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3