YOLOv9s-Pear: A Lightweight YOLOv9s-Based Improved Model for Young Red Pear Small-Target Recognition

Author:

Shi Yi12,Duan Zhen2,Qing Shunhao1ORCID,Zhao Long3ORCID,Wang Fei1,Yuwen Xingcan1

Affiliation:

1. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China

2. Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China

3. College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China

Abstract

With the advancement of computer vision technology, the demand for fruit recognition in agricultural automation is increasing. To improve the accuracy and efficiency of recognizing young red pears, this study proposes an improved model based on the lightweight YOLOv9s, termed YOLOv9s-Pear. By constructing a feature-rich and diverse image dataset of young red pears and introducing spatial-channel decoupled downsampling (SCDown), C2FUIBELAN, and the YOLOv10 detection head (v10detect) modules, the YOLOv9s model was enhanced to achieve efficient recognition of small targets in resource-constrained agricultural environments. Images of young red pears were captured at different times and locations and underwent preprocessing to establish a high-quality dataset. For model improvements, this study integrated the general inverted bottleneck blocks from C2f and MobileNetV4 with the RepNCSPELAN4 module from the YOLOv9s model to form the new C2FUIBELAN module, enhancing the model’s accuracy and training speed for small-scale object detection. Additionally, the SCDown and v10detect modules replaced the original AConv and detection head structures of the YOLOv9s model, further improving performance. The experimental results demonstrated that the YOLOv9s-Pear model achieved high detection accuracy in recognizing young red pears, while reducing computational costs and parameters. The detection accuracy, recall, mean precision, and extended mean precision were 0.971, 0.970, 0.991, and 0.848, respectively. These results confirm the efficiency of the SCDown, C2FUIBELAN, and v10detect modules in young red pear recognition tasks. The findings of this study not only provide a fast and accurate technique for recognizing young red pears but also offer a reference for detecting young fruits of other fruit trees, significantly contributing to the advancement of agricultural automation technology.

Funder

Ministry of Agriculture and Rural Affairs Academy of Agricultural Planning and Engineering Independent Research and Development Project

National Natural Science Foundation of China

Key R&D and Promotion Projects in Henan Province

Key Scientific Research Projects of Colleges and Universities in Henan Province

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3