Positioning responsible learning analytics in the context of STEM identities of under-served students

Author:

Grimm Adrian,Steegh Anneke,Çolakoğlu Jasmin,Kubsch Marcus,Neumann Knut

Abstract

Addressing 21st century challenges, professionals competent in science, technology, engineering, and mathematics (STEM) will be indispensable. A stronger individualisation of STEM learning environments is commonly considered a means to help more students develop the envisioned level of competence. However, research suggests that career aspirations are not only dependent on competence but also on STEM identity development. STEM identity development is relevant for all students, but particularly relevant for already under-served students. Focusing solely on the development of competence in the individualisation of STEM learning environments is not only harming the goal of educating enough professionals competent in STEM, but may also create further discrimination against those students already under-served in STEM education. One contemporary approach for individualisation of learning environments is learning analytics. Learning analytics are known to come with the threat of the reproduction of historically grown inequalities. In the research field, responsible learning analytics were introduced to navigate between potentials and threats. In this paper, we propose a theoretical framework that expands responsible learning analytics by the context of STEM identity development with a focus on under-served students. We discuss two major issues and deduce six suppositions aimed at guiding the use of as well as future research on the use of learning analytics in STEM education. Our work can inform political decision making on how to regulate learning analytics in STEM education to help providing a fair chance for the development of STEM identities for all students.

Publisher

Frontiers Media SA

Subject

Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3