Fairness, Trust, Transparency, Equity, and Responsibility in Learning Analytics

Author:

Khalil MohammadORCID,Prinsloo Paul,Slade SharonORCID

Abstract

Learning analytics has the capacity to provide potential benefit to a wide range of stakeholders within a range of educational contexts. It can provide prompt support to students, facilitate effective teaching, highlight aspects of course content that might be adapted, and predict a range of possible outcomes, such as students registering for more appropriate courses, supporting students’ self-efficacy, or redesigning a course’s pedagogical strategy. It will do all these things based on the assumptions and rules that learning analytics developers set out. As such, learning analytics can exacerbate existing inequalities such as unequal access to support or opportunities based on (any combination of) race, gender, culture, age, socioeconomic status, etc., or work to overcome the impact of such inequalities on realizing student potential. In this editorial, we introduce several selected articles that explore the principles of fairness, equity, and responsibility in the context of learning analytics. We discuss existing research and summarize the papers within this special section to outline what is known, and what remains to be explored. This editorial concludes by celebrating the breadth of work set out here, but also by suggesting that there are no simple answers to ensuring fairness, trust, transparency, equity, and responsibility in learning analytics. More needs to be done to ensure that our mutual understanding of responsible learning analytics continues to be embedded in the learning analytics research and design practice.

Publisher

Society for Learning Analytics Research

Subject

Computer Science Applications,Education

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Academic Success in Large Online Courses at a Mega ODL University;Technology, Knowledge and Learning;2024-07-09

2. Implementing equitable and intersectionality‐aware ML in education: A practical guide;British Journal of Educational Technology;2024-05-23

3. An Investigation of US Universities' Implementation of FERPA Student Directory Policies and Student Privacy Preferences;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Equity and Fairness Challenges in Online Learning in the Age of ChatGPT;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

5. Investigating Algorithmic Bias on Bayesian Knowledge Tracing and Carelessness Detectors;Proceedings of the 14th Learning Analytics and Knowledge Conference;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3