Effects of alkaline and ultrasonication on duckweed (Wolffia arrhiza) protein extracts’ physicochemical and techno-functional properties

Author:

Nitiwuttithorn Chotika,Wongsasulak Saowakon,Vongsawasdi Punchira,Yongsawatdigul Jirawat

Abstract

Wolffia is a protein-rich aquatic plant with the potential to help address food sustainability issues; however, a more efficient extraction process must be sought due to limited yield with conventional methods. This study aimed to investigate the effects of duckweed forms (fresh and dried), duckweed-to-aqueous solution ratio (DSR), as well as alkaline and ultrasonication extractions on yields, physicochemical and techno-functional properties of duckweed protein extracts (DPE). Three extraction methods were used: alkaline extraction (AE), ultrasound-assisted alkaline extraction (UAAE), and ultrasound-assisted water extraction (UAWE). The study showed fresh duckweed resulted in a 2.5-fold higher yield and protein recovery than oven-dried duckweed. UAE significantly enhanced extraction yield and protein recovery. The optimal extraction process was a DSR of 1:6 using UAAE at pH 8.5, resulting in a 16% yield and 34% protein recovery. Furthermore, the study found that UAE facilitated the extraction of non-polar/hydrophobic amino acids while AE proved to be efficient in extracting sulfur-containing amino acids. This study, for the first time, revealed the role of UAE and AE in promoting the extraction of different profiles of amino acids. The DPE produced using UAAE contained 65% protein, meeting the WHO/FAO/UNU recommended protein intake for preschool-aged children. Furthermore, the DPE exhibited excellent emulsifying properties and oil-holding capacity comparable to commercial soy protein isolates. Overall, UAAE was identified as a promising approach for producing techno-functional and nutritious protein ingredients from Wolffia. The resulting DPE proved to show great potential for functional plant-based food and feed applications.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3