Pomelo Green Production on Acidic Soil: Reduce Traditional Fertilizers, but Do Not Ignore Magnesium

Author:

Chen Xiaohui,Yan Xiaojun,Muneer Muhammad Atif,Weng Xuefan,Cai Yuanyang,Ma Changcheng,Liu You,Zhang Siwen,Zhang Weiqiang,Yang Wenhao,Wu Liangquan,Zhou Shungui,Zhang Fusuo

Abstract

Orchards in acid soils are at risk of magnesium (Mg) deficiency which negatively affects the plant growth, yield, and quality. However, the impacts of Mg supplementation on fruit yield, quality, and environmental and economic benefits have only been rarely addressed. We conducted 15 pomelo (Citrus grandis L.) orchard trials in South China to assess more efficient integrated nutrient management (INM) practices, including local farmer fertilization practices (FP; average application rate of nitrogen, phosphorus, and potassium were 1,075 kg N ha−1, 826 kg P2O5 ha−1, and 948 kg K2O ha−1, respectively), optimum fertilization practice (OPT; average application rate of nitrogen, phosphorus, and potassium were 550 kg N ha−1, 295 kg P2O5 ha−1, and 498 kg K2O ha−1, respectively) and optimum fertilization supplemented with Mg (OPT+Mg; average application rate of Mg was 196 kg MgO ha−1). The results showed that the yield, total soluble solid-to-titratable acidity ratio, and economic benefits under OPT practice were not significantly different from those of FP, while those of OPT+Mg were significantly higher than those of FP, by 8.76, 8.79, and 15.00%, respectively, while titratable acidity contents were significantly lower by 7.35%. In addition, compared with those from FP, the energy inputs and greenhouse gas (GHG) emissions from OPT were 31.00 and 26.48% lower, and those from OPT+Mg were 26.71 and 23.40% lower, respectively. Compared with those of OPT, the marginal efficiency of energy, GHG emissions, and capital of Mg under OPT+Mg were reduced by 62.30, 44.19, and 21.07%, respectively. Overall, adopting OPT+Mg for pomelo production could further enhance yield, fruit quality, and economic benefits while reducing the environmental burdens.

Funder

Fujian Agriculture and Forestry University

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3