Carvacrol, citral, eugenol and cinnamaldehyde casein based edible nanoemulsions as novel sustainable active coatings for fresh pork tenderloin meat preservation

Author:

Zaharioudakis Konstantinos,Salmas Constantinos E.,Andritsos Nikolaos D.,Kollia Eleni,Leontiou Areti,Karabagias Vasillios K.,Karydis-Messinis Andreas,Moschovas Dimitrios,Zafeiropoulos Nikolaos E.,Avgeropoulos Apostolos,Proestos Charalampos,Giannakas Aris E.

Abstract

Introduction: Nowadays, the bioeconomy and sustainability trends drive the food sector to replace chemical preservatives with bioactive compounds recovered from biomass such as essential oils (EOs) and their derivatives. Moreover, nanotechnology trend drives food sector in the nanoencapsulation of such bioactive compounds in novel edible formulations such as nanoemulsions to enhance their controlled release properties, their bioactivity and their biocompatibility.Methods: In this study the development and characterization of novel casein/lecithin (CSN/LCN) based nanoemulsions (NEs) with carvacrol (CV), cinnamaldehyde (CI), citral (CT), and eugenol (EG) as nanoencapsulated oil phase is presented as well as the application of such NEs as active coatings for the preservation of fresh pork tenderloin.Results and discussion: DLS measurements as well as TEM images showed an average particle size distribution of 20–40 nm for all obtained NEs, while z-potential results indicate their physicochemical stability. All the obtained NEs needed at least 5 times less amount of EOs derivatives to scavenge 50% of radicals and demonstrated a higher antibacterial activity against Escherichia coli and Listeria monocytogenes compared to free EOs derivatives. Pork fresh tenderloin meat treated with NEs demonstrated 30% higher efficacy in obtained lipid oxidation values than uncoated pork meat samples and 12% higher efficacy in obtained lipid oxidation values than pork meat samples treated with EOs derivatives. From a microbiological point of view NEs manage to extend pork tenderloin meat shelf life by 6 days compared to uncoated pork tenderloin meat and by 3 days compared to tenderloin pork meat coated with free EOs derivatives. Lab* colorimetry analysis as well as sensory analysis revealed that such edible CSN/LCN based NEs succeeded to preserve the texture, appearance, and color of pork tenderloin meat in higher acceptance limits compared to the corresponding characteristics of pork tenderloin meat coated with free EOs derivatives. Overall, the current study suggests novel CSN/LCN-based edible NEs as a promising technology that can be used as edible active coatings in the meat food industry.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3