A Numerical Approach to Analyze the Performance of a PEF-Ohmic Heating System in Microbial Inactivation of Solid Food

Author:

Moya J.,Astráin-Redín L.,Grasa J.,Cebrián G.,Calvo B.,Álvarez I.

Abstract

Pulsed Electric Fields (PEF) technology has been recently proposed as a new ohmic-heating system for the heat treatment of solid products in short periods (less than 1 min). However, similar to traditional ohmic heating, non-homogeneous distribution of temperature has been observed and cold points appeared in the interphase between the solid treated product and the electrodes, which can limit the technology for assuring food safety for treated solid products. In this investigation, a computational axisymmetric model of a lab-scale PEF system for a solid product (agar cylinder) was developed. This model was used to predict the temperature and the electric field distribution, treatment time, and the microbial inactivation (Salmonella Typhimurium 878) in the solid product after a PEF-ohmic treatment. Using a factorial analysis, a total of 8 process conditions with different settings of applied field strength levels (2.5–3.75 kV/cm), frequencies (100–200 Hz), and initial agar and electrode temperature (40–50°C) were simulated for the agar cylinder in order to identify the effect and optimal values of these parameters, which offer the most temperature homogeneity. The results showed that the initial temperature of the agar and the electrodes was of great importance in achieving the best temperature uniformity, limiting the occurrence of cold points, and therefore, improving the homogeneity in the level of inactivation of Salmonella Typhimurium 878 all over the agar cylinder. A treatment of 2.3 s would be enough at 3.75 kV/cm, 200 Hz with an initial temperature of 50°C of the agar and the electrodes, for a 5-Log10 reduction of Salmonella Typhimurium 878 in the whole product with a deviation of 9°C between the coldest and hottest point of the solid.

Funder

Norges Forskningsråd

Gobierno de Aragón

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3