Mapping crop evapotranspiration with high-resolution imagery and meteorological data: insights into sustainable agriculture in Prince Edward Island

Author:

Imtiaz Fatima,Farooque Aitazaz,Wang Xander,Abbas Farhat,Afzaal Hassan,Esau Travis,Acharya Bishnu,Zaman Qamar

Abstract

Soil moisture variability caused by soil erosion, weather extremes, and spatial variations in soil health is a limiting factor for crop growth and productivity. Crop evapotranspiration (ET) is significant for irrigation water management systems. The variability in crop water requirements at various growth stages is a common concern at a global level. In Canada’s Prince Edward Island (PEI), where agriculture is particularly prominent, this concern is predominantly evident. The island’s most prominent business, agriculture, finds it challenging to predict agricultural water needs due to shifting climate extremes, weather patterns, and precipitation patterns. Thus, accurate estimations for irrigation water requirements are essential for water conservation and precision farming. This work used a satellite-based normalized difference vegetation index (NDVI) technique to simulate the crop coefficient (Kc) and crop evapotranspiration (ETc) for field-scale potato cultivation at various crop growth stages for the growing seasons of 2021 and 2022. The standard FAO Penman–Monteith equation was used to estimate the reference evapotranspiration (ETr) using weather data from the nearest weather stations. The findings showed a statistically significant (p < 0.05) positive association between NDVI and tabulated Kc values extracted from all three satellites (Landsat 8, Sentinel-2A, and Planet) for the 2021 season. However, the correlation weakened in the subsequent year, particularly for Sentinel-2A and Planet data, while the association with Landsat 8 data became statistically insignificant (p > 0.05). Sentinel-2A outperformed Landsat 8 and Planet overall. The Kc values peaked at the halfway stage, fell before the maturity period, and were at their lowest at the start of the season. A similar pattern was observed for ETc (mm/day), which peaked at midseason and decreased with each developmental stage of the potato crop. Similar trends were observed for ETc (mm/day), which peaked at the mid-stage with mean values of 4.0 (2021) and 3.7 (2022), was the lowest in the initial phase with mean values of 1.8 (2021) and 1.5 (2022), and grew with each developmental stage of the potato crop. The study’s ET maps show how agricultural water use varies throughout a growing season. Farmers in Prince Edward Island may find the applied technique helpful in creating sustainable growth plans at different phases of crop development. Integrating high-resolution imagery with soil health, yield mapping, and crop growth parameters can help develop a decision support system to tailor sustainable management practices to improve profit margins, crop yield, and quality.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference43 articles.

1. Homogeneity in patterns of climate extremes between two cities—a potential for flood planning in relation to climate change;Abbas;Water,2020

2. Storm aftermath threatens P.E.I. Potato farms | the western ProducerThe western producer Admin 2022

3. Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning;Afzaal;Water,2019

4. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56;Allen;Fao, Rome,1998

5. Applying the FAO-56 dual kc method for irrigation water requirements over large areas of the western U.S;Allen;Trans. ASABE,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3