Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning

Author:

Afzaal Hassan,Farooque Aitazaz A.,Abbas FarhatORCID,Acharya Bishnu,Esau Travis

Abstract

Precise estimation of physical hydrology components including groundwater levels (GWLs) is a challenging task, especially in relatively non-contiguous watersheds. This study estimates GWLs with deep learning and artificial neural networks (ANNs), namely a multilayer perceptron (MLP), long short term memory (LSTM), and a convolutional neural network (CNN) with four different input variable combinations for two watersheds (Baltic River and Long Creek) in Prince Edward Island, Canada. Variables including stream level, stream flow, precipitation, relative humidity, mean temperature, evapotranspiration, heat degree days, dew point temperature, and evapotranspiration for the 2011–2017 period were used as input variables. Using a hit and trial approach and various hyperparameters, all ANNs were trained from scratched (2011–2015) and validated (2016–2017). The stream level was the major contributor to GWL fluctuation for the Baltic River and Long Creek watersheds (R2 = 50.8 and 49.1%, respectively). The MLP performed better in validation for Baltic River and Long Creek watersheds (RMSE = 0.471 and 1.15, respectively). Increased number of variables from 1 to 4 improved the RMSE for the Baltic River watershed by 11% and for the Long Creek watershed by 1.6%. The deep learning techniques introduced in this study to estimate GWL fluctuations are convenient and accurate as compared to collection of periodic dips based on the groundwater monitoring wells for groundwater inventory control and management.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3