Homogeneity in Patterns of Climate Extremes Between Two Cities—A Potential for Flood Planning in Relation to Climate Change

Author:

Abbas FarhatORCID,Farooque Aitazaz A.,Afzaal HassanORCID

Abstract

Information about potential scenarios and causes of floods is important for future planning. Historical weather data of Fredericton (New Brunswick) and Charlottetown (Prince Edward Island), the two coastal cities of Atlantic Canada, were analyzed using RClimDex, Mann–Kendall test, and Sen’s slope estimates for potential scenarios and causes of floods. Flood hazard analyses were conducted using GIS (Geographical Information System) and ArcSWAT software. The watersheds of Fredericton and Charlottetown were delineated from 25 × 25 m resolution DEMs (Digital Elevation Models) of the two cities followed by percent watershed area calculations for different elevation classes for flood generation. Over the past 100 years, there was a significant decreasing trend in the high intensity precipitation in Charlottetown supported by a significant decrease in the number of heavy precipitation days. However, maximum one-day precipitation and maximum five-day precipitation significantly increased in Charlottetown and Fredericton, respectively. Charlottetown received more annual precipitation than Fredericton. In the last 30 years, there was an event exceeding 50 mm precipitation (considered as a threshold for the return period of urban floods) in Charlottetown; Fredericton experienced such events for more than 1.5 times. For twelve times, these events occurred more than once in a year in Charlottetown as compared to fourteen times in Fredericton. Despite statistically proven similarities in the occurrence of extreme events in the two cities, the visualized flood hazards, and the mapping of watershed characteristics, no devastating floods were reported for Charlottetown. This does not necessarily mean that there had never been risks of flooding in Charlottetown. These findings may help policymakers for future developments.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3