Influence of three different manure treatments on antimicrobial resistance genes and mobile genetic elements

Author:

Flores-Orozco Daniel,Levin David,Kumar Ayush,Sparling Richard,Cicek Nazim

Abstract

There is a growing concern about the potential dissemination of antimicrobial resistance into agricultural fields due to the application of manure as crop fertilizer. While reducing the usage of antibiotics in livestock production stands as the first alternative to prevent this problem, there is evidence that this may not be enough to eliminate antimicrobial resistance elements already present in manure microbiomes. This study employed a metagenomic approach to investigate the impact of common manure treatments, including aerobic storage, mesophilic anaerobic digestion (MAD), and solid-liquid separation, on the presence and abundance of antimicrobial resistance genes (ARGs), bactericides, and heavy metal resistance genes (BacMet), and mobile genetic elements (MGEs) in manure from three different farms, including one operating in an antibiotic-free environment. The results indicated that MAD was the best method to reduce the numbers of ARGs, BacMet, and MGEs, achieving reduction rates greater than 40%, 89%, and 68%, respectively. Manure storage significantly reduced BacMet levels (over 30%) and MGEs (28%) but had no significant effect on total ARG levels. Solids recovered through solid-liquid separation exhibited elevated levels of ARGs, BacMet, and MGEs, while the liquid fraction displayed levels similar to untreated manures. Correlation and co-occurrence modeling analyses indicated that changes in microbial communities, particularly fluctuations in aerobic and facultative communities belonging to Bacillota, Actinomycetota, and Pseudomonadota phyla, played a significant role in driving changes in ARGs, BacMet, and MGEs. The results also showed the presence of toxin-antitoxin and transposon systems near different ARGs. Overall, the results confirmed that genes conferring resistance to various antimicrobials and MGE capable of mobilizing them are widely spread in dairy farms; that even under the absence of antibiotics, the use of heavy metals and disinfectants may promote the maintenance of ARGs and MGEs, and; that treatment such as anaerobic digestion could reduce the risk of the spread of antimicrobial resistance.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference60 articles.

1. Sustainable re-use of dairy cow manure as bedding and compost: nutrients and self-heating potential;Ackerman;Can. Biosyst. Eng./ Le. Genie Des. Biosyst. au Can.,2018

2. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update;Afgan;Nucleic Acids Res.,2018

3. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database;Alcock;Nucleic Acids Res.,2020

4. Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data AndrewsS. 2010

5. Trimmomatic: a flexible trimmer for Illumina sequence data;Bolger;Bioinformatics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3