Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model

Author:

Chen Tai-Shen,Aoike Toru,Yamasaki Masanori,Kajiya-Kanegae Hiromi,Iwata Hiroyoshi

Abstract

Accurate prediction of heading date under various environmental conditions is expected to facilitate the decision-making process in cultivation management and the breeding process of new cultivars adaptable to the environment. Days to heading (DTH) is a complex trait known to be controlled by multiple genes and genotype-by-environment interactions. Crop growth models (CGMs) have been widely used to predict the phenological development of a plant in an environment; however, they usually require substantial experimental data to calibrate the parameters of the model. The parameters are mostly genotype-specific and are thus usually estimated separately for each cultivar. We propose an integrated approach that links genotype marker data with the developmental genotype-specific parameters of CGMs with a machine learning model, and allows heading date prediction of a new genotype in a new environment. To estimate the parameters, we implemented a Bayesian approach with the advanced Markov chain Monte-Carlo algorithm called the differential evolution adaptive metropolis and conducted the estimation using a large amount of data on heading date and environmental variables. The data comprised sowing and heading dates of 112 cultivars/lines tested at 7 locations for 14 years and the corresponding environmental variables (day length and daily temperature). We compared the predictive accuracy of DTH between the proposed approach, a CGM, and a single machine learning model. The results showed that the extreme learning machine (one of the implemented machine learning models) was superior to the CGM for the prediction of a tested genotype in a tested location. The proposed approach outperformed the machine learning method in the prediction of an untested genotype in an untested location. We also evaluated the potential of the proposed approach in the prediction of the distribution of DTH in 103 F2 segregation populations derived from crosses between a common parent, Koshihikari, and 103 cultivars/lines. The results showed a high correlation coefficient (ca. 0.8) of the 10, 50, and 90th percentiles of the observed and predicted distribution of DTH. In this study, the integration of a machine learning model and a CGM was better able to predict the heading date of a new rice cultivar in an untested potential environment.

Funder

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3