A new framework for predicting and understanding flowering time for crop breeding

Author:

Deva Chetan1ORCID,Dixon Laura1,Urban Milan2,Ramirez‐Villegas Julian23,Droutsas Ioannis14ORCID,Challinor Andrew1

Affiliation:

1. University of Leeds Leeds UK

2. The International Center for Tropical Agriculture (CIAT) Cali Colombia

3. Wageningen University Wageningen The Netherlands

4. Department of Plant Sciences University of California, Davis Davis CA USA

Abstract

Societal Impact StatementAs the growing season changes, the development of climate resilient crop varieties has emerged as a crucial adaptation in agricultural systems. Breeding new varieties for a changing climate requires enhanced capacity to predict the complex interactions between genotype and environment that determine flowering time. Hundreds of experiments with observations of flowering, the environment and plant genetics were used to build a model that can predict when a variety of common bean is going to flower. This model will help breeders to explore the phenological characteristics of their germplasm, speeding up selection for climate adaptation.Summary There is an urgent need to accelerate crop breeding for adaptation to a changing climate. As the growing season changes, crop improvement programmes must ensure that the phenological characteristics of the varieties they develop remain well suited to their target population of environments. Meeting this challenge will require a clear understanding of how existing germplasm behave across Genotype ∗ Environment (G ∗ E) to enhance the efficiency of selection. Recent work calls for the development of simple models that can accurately simulate genotypic variation in key traits across target population of environments. Accordingly, we develop a simple machine learning framework for modelling time to flowering across G ∗ E and apply this to common bean in an equatorial target population of environments. Within this framework, we test three machine learning models and find that the best performing models display high levels of accuracy across G ∗ E. We advance understanding of the environmental drivers of flowering time in equatorial conditions by showing that thermal time and accumulated evaporation are powerful predictors of flowering time across all three models.

Funder

Biotechnology and Biological Sciences Research Council

Deutsche Gesellschaft für Internationale Zusammenarbeit

Publisher

Wiley

Subject

Horticulture,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3