Sequencing Reveals Population Structure and Selection Signatures for Reproductive Traits in Yunnan Semi-Fine Wool Sheep (Ovis aries)

Author:

Guo Yi,Liang Jiachong,Lv Chunrong,Wang Yi,Wu Guoquan,Ding Xiangdong,Quan Guobo

Abstract

Yunnan semi-fine wool sheep are among the most important cultivated sheep breeds in China. However, their population structure, genetic characteristics and traits of interest are poorly studied. In this study, we systematically studied the population characteristics and selection signatures of 40 Yunnan semi-fine wool sheep using SNPs obtained from whole-genome resequencing data. A total of 1393 Gb of clean data were acquired. The mapping rate against the reference genome was 91.23% on average (86.01%–92.26%), and the average sequence depth was 9.51X. After filtering, 28,593,198 SNPs and 4,725,259 indels with high quality were obtained. The heterozygosity rate, inbreeding coefficient and effective population size of the sheep were calculated to preliminarily explore their genetic characteristics. The average heterozygosity rate was 0.264, the average inbreeding coefficient was 0.0099, and the effective population size estimated from the heterozygote excess (HE) was 242.9. Based on the Tajima’s D and integrated haplotype score (iHS) approaches, 562 windows and 11,356 core SNPs showed selection signatures in the Yunnan semi-fine wool sheep population. After genome annotation and gene enrichment analysis, we found traces of early domestication in sensory organs, behavioural activity and the nervous system as well as adaptive changes in reproductive and wool traits under selection in this population. Some selected genes related to litter size, including FSHR, BMPR1B and OXT, were identified as being under selection. Specific missense mutations of the FSHR gene that differed from the reference genome were also identified in the population, and we found some SNP variations that may affect litter size. Our findings provide a theoretical basis for the conservation and utilization of Yunnan semi-fine wool sheep. Furthermore, our results reveal some changes common to sheep after domestication and provide a new opportunity to investigate the genetic variation influencing fecundity within a population evolving under artificial selection.

Funder

Major Science and Technology Projects in Yunnan Province

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3