Transcriptional regulation mechanism of flavonoids biosynthesis gene during fruit development in astragalus membranaceus

Author:

Hu Pengfei,Suriguga ,Zhao Ming,Chen Shaoqing,Wu Xiaohua,Wan Quan

Abstract

Astragalus membranaceus, as an important medicinal plant, are an excellent source of flavonoids. Flavonoid compounds in A. membranaceus have been widely used in medicine and supplement, but known of the molecular mechanism of flavonoid biosynthesis is still very few. Here, we analyzed the association between flavonoid content and gene expression pattern during six different fruit developmental stages. Sixteen gene expression trends were significantly identified, involving 8,218 genes. The gene expression trend in profile 0 was positively correlated with flavonoid content, while the gene expression trend in profile 79 was negatively correlated with flavonoid content at six developmental stages. The expression level of genes involved in the general phenylpropane pathway was higher than that of genes involved in the flavonoid biosynthesis pathway. A total of 37 genes involved in flavonoid synthesis were identified in A. membranaceus. The expression pattern of flavonoid-related genes was highly correlated with flavonoid content. Our study deepened the understanding of the flavonoid synthesis mechanism and provided useful resources for future studies on the high flavonoid molecular breeding of A. membranaceus.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3