Combining high carotenoid, grain protein content and rust resistance in wheat for food and nutritional security

Author:

Padhy Asish Kumar,Sharma Achla,Sharma Himanshu,Srivastava Puja,Singh Satinder,Kaur Parampreet,Kaur Jaspal,Kaur Satinder,Chhuneja Parveen,Bains Navtej Singh

Abstract

Globally, malnutrition has given birth to an alarming predicament, especially in developing countries, and has extensively shifted consumer preferences from conventional high-energy diets to a nutritionally balanced, cost-effective, sustainable, and healthy lifestyle. In keeping with this view and the mandate for developing high-yielding, disease-resistant biofortified staple food (wheat) for catering to the demand-driven market, the current research aimed at stacking together the enhanced grain protein content, carotenoid content, and disease resistance in an elite bread wheat background. The Y gene (PsyE1) and the GpcB1 gene were used as novel sources for enhancing the grain carotenoid and protein content in the commercial elite bread wheat cultivar HD2967. The combination also led to the stacking of resistance against all three foliar rusts owing to linked resistance genes. A stepwise hybridization using Parent 1 (HD2967 + PsyE1/Lr19/Sr25) with Parent 2 (PBW550 + GpcB1/Yr36+ Yr15), coupled with a phenotypic-biochemical selection, narrowed down 2748 F2 individuals to a subset of 649 F2 plants for molecular screening. The gene-specific markers PsyE1, PsyD1, Xucw108, and Xbarc8 for the genes PsyE1, PsyD1, GpcB1, and Yr15, respectively, were employed for forward selection. Four bread wheat lines positive for all the desired genes with high carotenoid (>8ppm) and protein (>13%) content were raised to the F5 generation and will be evaluated for yield potential after bulking. These improved advanced breeding lines developed following multipronged efforts should prove a valuable and unique source for the development of cultivars with improved nutritional quality and rust resistance in wheat breeding programs.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3