Improvement of Background Solution for Optically Induced Dielectrophoresis-Based Cell Manipulation in a Microfluidic System

Author:

Chu Po-Yu,Hsieh Chia-Hsun,Chen Chih-Yu,Wu Min-Hsien

Abstract

Optically induced dielectrophoresis (ODEP) is effective for cell manipulation. However, its utilization has been limited by the requirement of solution with low conductivity. This issue has been ignored in ODEP-relevant studies. To address this issue, this study aims to investigate to what extent the cell viability and performance of ODEP-based cell manipulation are affected by low conductivity conditions. Additionally, this study aims to modify sucrose solutions to reduce the impacts caused by low-conductivity solutions. Results revealed the use of sucrose solution in ODEP operation could significantly reduce the viability of the manipulated cells by 9.1 and 38.5% after 2- and 4-h incubation, respectively. Prolonged operation time (e.g., 4 h) in sucrose solution could lead to significantly inferior performance of cell manipulation, including 47.2% reduction of ODEP manipulation velocity and 44.4% loss of the cells manipulatable by ODEP. The key finding of this study is that the use of bovine serum albumin (BSA)-supplemented sucrose solution (conductivity: 25–50 μS cm−1) might significantly increase the cell viability by 10.9–14.8% compared with that in sucrose solution after 4 h incubation. Moreover, the ODEP manipulation velocity of cells in the BSA-supplemented sucrose solution (conductivity: 25 μS cm−1) was comparable to that in sucrose solution during 4-h incubation. More importantly, compared with sucrose solution, the use of BSA-supplemented sucrose solution (conductivity: 25–50 μS cm−1) contributed high percentage (80.4–93.5%) of the cells manipulatable by ODEP during 4-h incubation. Overall, this study has provided some fundamental information relevant to the improvement of background solutions for ODEP-based cell manipulation.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Memorial Hospital

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3