Time-frequency analysis of venous pulsatile flow and sigmoid sinus vascular wall displacement causing pulsatile tinnitus using time series and magnitude squared coherence methods

Author:

Hsieh Yue-Lin12,Hsieh Yue-Da3,Wang Wuqing12ORCID

Affiliation:

1. Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China

2. NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China

3. Department of Economics, London School of Economics and Political Science, London WC2A 2AE, UK

Abstract

Displacement of the sigmoid sinus vascular wall and intrasinus blood flow motion is known to cause pulsatile tinnitus (PT) in patients with sigmoid plate dehiscence. To investigate the source of sound that causes PT, this study sought to determine the correlation between in vivo displacement of the vascular wall and intrasinus flow hemodynamics. A confocal laser displacement sensor and color-coded Doppler ultrasound system were implemented on a participant diagnosed with venous PT. The displacement and Doppler velocity data were analyzed using time series and magnitude squared coherence methods. The median and peak displacement values of the vascular wall were 6.7 [Formula: see text]m and 11.7 [Formula: see text]m, respectively. The major frequency range of vascular displacement was below 4 Hz. The portmanteau test was rejected for different values of m. The cross-correlation of the two processes was not zero, indicating the existence of cross-correlation. The peak magnitude squared coherence of the two gauged signals was 0.3 at 7.143 Hz. The displacement of the sigmoid sinus vascular wall was temporally correlated with the intrasinus flow, although the major frequency range of the induced vascular displacement fell below the human hearing threshold. Therefore, the hydroacoustic and vibroacoustic sounds induced by the fluid–structure interaction between the vascular and osseous structures overweighed the displacement of the vascular wall at the focal dehiscence area in PT production.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3