Advancing stroke therapy: the potential of MOF-based nanozymes in biomedical applications

Author:

Chen Meirong,Qin Yang,Peng Yongmei,Mai Ruyu,Teng Huanyao,Qi Zhongquan,Mo Jingxin

Abstract

In this study, we explored the growing use of metal-organic framework (MOF)-based Nanozymes in biomedical research, with a specific emphasis on their applications in stroke therapy. We have discussed the complex nature of stroke pathophysiology, highlighting the crucial role of reactive oxygen species (ROS), and acknowledging the limitations of natural enzymes in addressing these challenges. We have also discussed the role of nanozymes, particularly those based on MOFs, their structural similarities to natural enzymes, and their potential to improve reactivity in various biomedical applications. The categorization of MOF nanozymes based on enzyme-mimicking activities is discussed, and their applications in stroke therapy are explored. We have reported the potential of MOF in treating stroke by regulating ROS levels, alleviation inflammation, and reducing neuron apoptosis. Additionally, we have addressed the challenges in developing efficient antioxidant nanozyme systems for stroke treatment. The review concludes with the promise of addressing these challenges and highlights the promising future of MOF nanozymes in diverse medical applications, particularly in the field of stroke treatment.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3