A Novel Endoplasmic Reticulum‐Targeted Metal–Organic Framework–Confined Ruthenium (Ru) Nanozyme Regulation of Oxidative Stress for Central Post‐Stroke Pain

Author:

Bai Qian1,Han Yupeng1,Khan Suliman1,Wu Tingting2,Yang Ying2,Wang Yingying1,Tang Hao3,Li Qing1ORCID,Jiang Wei123ORCID

Affiliation:

1. Medical research center The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China

2. Academy of Medical Science Zhengzhou University Zhengzhou Henan 450052 China

3. Henan Key Laboratory of Chronic Disease Management Henan Provincial People's Hospital Central China Fuwai Hospital of Zhengzhou University Zhengzhou 451464 China

Abstract

AbstractCentral post‐stroke pain (CPSP) is a chronic neuropathic pain caused by cerebrovascular lesion or disfunction after stroke. Convincing evidence suggest that excessive reactive oxygen species (ROS), generated matrix metalloproteinase (MMPs) and neuroinflammation are largely involved in the development of pain. In this study, an effective strategy is reported for treating pain hypersensitivity using an endoplasmic reticulum (ER)‐targeted metal–organic framework (MOF)‐confined ruthenium (Ru) nanozyme. The Ru MOF is coated with a p‐dodecylbenzene sulfonamide (p‐DBSN) modified liposome with endoplasmic reticulum‐targeted function. The experimental results reveals that ROS, Emmprin, MMP‐2, and MMP‐9 are upregulated in the brain of CPSP mice, along with the elevated expression of inflammation markers such as TNF‐α and IL‐6. Compared to vehicle, one‐time intravenous administration of ER‐Ru MOF significantly reduces mechanical hypersensitivity after CPSP for three days. Overall, ER‐Ru MOF system can inhibit oxidative stress in the brain tissues of CPSP model, reduce MMPs expression, and suppress neuroinflammation response‐induced injury, resulting in satisfactory prevention and effective treatment of CPSP during a hemorrhagic stroke. The ER‐Ru MOF is expected to be useful for the treatment of neurological diseases associated with the vicious activation of ROS, based on the generality of the approach used in this study.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3