Modeling dynamic behavior of dielectric elastomer muscle for robotic applications

Author:

Jeong Seung Mo,Mun Heeju,Yun Sungryul,Kyung Ki-Uk

Abstract

Recently, as a strong candidate for artificial muscle, dielectric elastomer actuators (DEAs) have been given the spotlight due to their attractive benefits from fast, large, and reversible electrically-controllable actuation in ultra-lightweight structures. Meanwhile, for practical use in mechanical systems such as robotic manipulators, the DEAs are facing challenges in their non-linear response, time-varying strain, and low load-bearing capability due to their soft viscoelastic nature. Moreover, the presence of an interrelation among the time-varying viscoelasticity, dielectric, and conductive relaxations causes difficulty in the estimation of their actuation performance. Although a rolled configuration of a multilayer stack DEA opens up a promising route to enhance mechanical properties, the use of multiple electromechanical elements inevitably causes the estimation of the actuation response to be more complex. In this paper, together with widely used strategies to construct DE muscles, we introduce adoptable models that have been developed to estimate their electro-mechanical response. Moreover, we propose a new model that combines both non-linear and time-dependent energy-based modeling theories for predicting the long-term electro-mechanical dynamic response of the DE muscle. We verified that the model could accurately estimate the long-term dynamic response for as long as 20 min only with small errors as compared with experimental results. Finally, we present future perspectives and challenges with respect to the performance and modeling of the DE muscles for their practical use in various applications including robotics, haptics, and collaborative devices.

Funder

Korea Creative Content Agency

National Research Foundation of Korea

Electronics and Telecommunications Research Institute

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference57 articles.

1. Design methodology of a spring roll dielectric elastomer-based actuator for a hand rehabilitation system;Amin,2018

2. A new hand rehabilitation system based on the cable-driven mechanism and dielectric elastomer actuator;Amin;Mech. Sci.,2020

3. Developing spring-roll dielectric elastomer actuator system based on optimal design parameters;Awadalla;Int. J. Comput. Scie. Issues,2011

4. Data-driven haptic modeling of normal interactions on viscoelastic deformable objects using a random forest;Bhardwaj;IEEE Robot. Autom. Lett.,2019

5. Power optimization of a conical dielectric elastomer actuator for resonant robotic systems;Cao;Extreme Mech. Lett.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3