Radiolabeling of functional oligonucleotides for molecular imaging

Author:

Liu Dunfang,Xia Qian,Ding Ding,Tan Weihong

Abstract

Molecular imaging has greatly advanced basic biology and translational medicine through visualization and quantification of molecular events in a cellular context and living organisms. Nuclear medicine, including positron emission tomography (PET) and single-photon emission tomography (SPECT), is one of the most representative molecular imaging modalities which is widely used in clinical theranostics. Recently, numerous molecular imaging agents have been developed to improve the quality and expand the applicable diseases of molecular imaging. Based on the choice of specific imaging agents, molecular imaging is capable of studying tumor biological activities, detecting tumor metastasis, and imaging Alzheimer’s disease-related amyloid proteins. Among these imaging agents, functional oligonucleotides-based imaging probes are becoming increasingly important due to their unique features. Antisense oligonucleotides, small interfering RNA, and aptamers are privileged molecular tools in precision medicine for cancer diagnosis and treatment. These chemically synthesized oligonucleotides without batch-to-batch variations are flexible to incorporate with other molecules without affecting their functionalities. Therefore, through the combination of oligonucleotides with radioisotopes, a series of molecular imaging agents were developed in the past decades to achieve highly sensitive and accurate biomedical imaging modalities for clinical theranostic. Due to the nature of oligonucleotides, the strategies of oligonucleotide radiolabeling are different from conventional small molecular tracers, and the radiolabeling strategy with rational design is highly correlated to the imaging quality. In this review, we summarize recent advancements in functional oligonucleotide radiolabeling strategies and respective molecular imaging applications. Meanwhile, challenges and future development insights of functional oligonucleotide-based radiopharmaceuticals are discussed in the end.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3