Biomimetic Vision for Zoom Object Detection Based on Improved Vertical Grid Number YOLO Algorithm

Author:

Shen Xinyi,Shi Guolong,Ren Huan,Zhang Wu

Abstract

With the development of bionic computer vision for images processing, researchers have easily obtained high-resolution zoom sensing images. The development of drones equipped with high-definition cameras has greatly increased the sample size and image segmentation and target detection are important links during the process of image information. As biomimetic remote sensing images are usually prone to blur distortion and distortion in the imaging, transmission and processing stages, this paper improves the vertical grid number of the YOLO algorithm. Firstly, the light and shade of a high-resolution zoom sensing image were abstracted, and the grey-level cooccurrence matrix extracted feature parameters to quantitatively describe the texture characteristics of the zoom sensing image. The Simple Linear Iterative Clustering (SLIC) superpixel segmentation method was used to achieve the segmentation of light/dark scenes, and the saliency area was obtained. Secondly, a high-resolution zoom sensing image model for segmenting light and dark scenes was established to made the dataset meet the recognition standard. Due to the refraction of the light passing through the lens and other factors, the difference of the contour boundary light and dark value between the target pixel and the background pixel would make it difficult to detect the target, and the pixels of the main part of the separated image would be sharper for edge detection. Thirdly, a YOLO algorithm with an improved vertical grid number was proposed to detect the target in real time on the processed superpixel image array. The adjusted aspect ratio of the target in the remote sensing image modified the number of vertical grids in the YOLO network structure by using 20 convolutional layers and five maximum aggregation layers, which was more accurately adapted to “short and coarse” of the identified object in the information density. Finally, through comparison with the improved algorithm and other mainstream algorithms in different environments, the test results on the aid dataset showed that in the target detection of high spatial resolution zoom sensing images, the algorithm in this paper showed higher accuracy than the YOLO algorithm and had real-time performance and detection accuracy.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Anhui Province

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3