Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review

Author:

Abdollahi AbolfazlORCID,Pradhan BiswajeetORCID,Shukla Nagesh,Chakraborty SubrataORCID,Alamri Abdullah

Abstract

One of the most challenging research subjects in remote sensing is feature extraction, such as road features, from remote sensing images. Such an extraction influences multiple scenes, including map updating, traffic management, emergency tasks, road monitoring, and others. Therefore, a systematic review of deep learning techniques applied to common remote sensing benchmarks for road extraction is conducted in this study. The research is conducted based on four main types of deep learning methods, namely, the GANs model, deconvolutional networks, FCNs, and patch-based CNNs models. We also compare these various deep learning models applied to remote sensing datasets to show which method performs well in extracting road parts from high-resolution remote sensing images. Moreover, we describe future research directions and research gaps. Results indicate that the largest reported performance record is related to the deconvolutional nets applied to remote sensing images, and the F1 score metric of the generative adversarial network model, DenseNet method, and FCN-32 applied to UAV and Google Earth images are high: 96.08%, 95.72%, and 94.59%, respectively.

Funder

University of Technology Sydney

King Saud University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3