Comparative Research on Deep Learning Approaches for Airplane Detection from Very High-Resolution Satellite Images

Author:

Alganci UgurORCID,Soydas Mehmet,Sertel ElifORCID

Abstract

Object detection from satellite images has been a challenging problem for many years. With the development of effective deep learning algorithms and advancement in hardware systems, higher accuracies have been achieved in the detection of various objects from very high-resolution (VHR) satellite images. This article provides a comparative evaluation of the state-of-the-art convolutional neural network (CNN)-based object detection models, which are Faster R-CNN, Single Shot Multi-box Detector (SSD), and You Look Only Once-v3 (YOLO-v3), to cope with the limited number of labeled data and to automatically detect airplanes in VHR satellite images. Data augmentation with rotation, rescaling, and cropping was applied on the test images to artificially increase the number of training data from satellite images. Moreover, a non-maximum suppression algorithm (NMS) was introduced at the end of the SSD and YOLO-v3 flows to get rid of the multiple detection occurrences near each detected object in the overlapping areas. The trained networks were applied to five independent VHR test images that cover airports and their surroundings to evaluate their performance objectively. Accuracy assessment results of the test regions proved that Faster R-CNN architecture provided the highest accuracy according to the F1 scores, average precision (AP) metrics, and visual inspection of the results. The YOLO-v3 ranked as second, with a slightly lower performance but providing a balanced trade-off between accuracy and speed. The SSD provided the lowest detection performance, but it was better in object localization. The results were also evaluated in terms of the object size and detection accuracy manner, which proved that large- and medium-sized airplanes were detected with higher accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3