Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech

Author:

Balagopalan Aparna,Eyre Benjamin,Robin Jessica,Rudzicz Frank,Novikova Jekaterina

Abstract

Introduction: Research related to the automatic detection of Alzheimer's disease (AD) is important, given the high prevalence of AD and the high cost of traditional diagnostic methods. Since AD significantly affects the content and acoustics of spontaneous speech, natural language processing, and machine learning provide promising techniques for reliably detecting AD. There has been a recent proliferation of classification models for AD, but these vary in the datasets used, model types and training and testing paradigms. In this study, we compare and contrast the performance of two common approaches for automatic AD detection from speech on the same, well-matched dataset, to determine the advantages of using domain knowledge vs. pre-trained transfer models.Methods: Audio recordings and corresponding manually-transcribed speech transcripts of a picture description task administered to 156 demographically matched older adults, 78 with Alzheimer's Disease (AD) and 78 cognitively intact (healthy) were classified using machine learning and natural language processing as “AD” or “non-AD.” The audio was acoustically-enhanced, and post-processed to improve quality of the speech recording as well control for variation caused by recording conditions. Two approaches were used for classification of these speech samples: (1) using domain knowledge: extracting an extensive set of clinically relevant linguistic and acoustic features derived from speech and transcripts based on prior literature, and (2) using transfer-learning and leveraging large pre-trained machine learning models: using transcript-representations that are automatically derived from state-of-the-art pre-trained language models, by fine-tuning Bidirectional Encoder Representations from Transformer (BERT)-based sequence classification models.Results: We compared the utility of speech transcript representations obtained from recent natural language processing models (i.e., BERT) to more clinically-interpretable language feature-based methods. Both the feature-based approaches and fine-tuned BERT models significantly outperformed the baseline linguistic model using a small set of linguistic features, demonstrating the importance of extensive linguistic information for detecting cognitive impairments relating to AD. We observed that fine-tuned BERT models numerically outperformed feature-based approaches on the AD detection task, but the difference was not statistically significant. Our main contribution is the observation that when tested on the same, demographically balanced dataset and tested on independent, unseen data, both domain knowledge and pretrained linguistic models have good predictive performance for detecting AD based on speech. It is notable that linguistic information alone is capable of achieving comparable, and even numerically better, performance than models including both acoustic and linguistic features here. We also try to shed light on the inner workings of the more black-box natural language processing model by performing an interpretability analysis, and find that attention weights reveal interesting patterns such as higher attribution to more important information content units in the picture description task, as well as pauses and filler words.Conclusion: This approach supports the value of well-performing machine learning and linguistically-focussed processing techniques to detect AD from speech and highlights the need to compare model performance on carefully balanced datasets, using consistent same training parameters and independent test datasets in order to determine the best performing predictive model.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Ageing

Reference54 articles.

1. Connected speech as a marker of disease progression in autopsy-proven Alzheimer's disease;Ahmed;Brain,2013

2. A web-based system for automatic measurement of lexical complexity,;Ai,2010

3. To BERT or not to BERT: comparing speech and language-based approaches for Alzheimer's disease detection;Balagopalan;Proc. Interspeech,2020

4. The effect of heterogeneous data for Alzheimer's disease detection from speech;Balagopalan,2018

5. The natural history of Alzheimer's disease: description of study cohort and accuracy of diagnosis;Becker;Arch. Neurol,1994

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3