Abstract
Background
Artificial intelligence models tailored to diagnose cognitive impairment have shown excellent results. However, it is unclear whether large linguistic models can rival specialized models by text alone.
Objective
In this study, we explored the performance of ChatGPT for primary screening of mild cognitive impairment (MCI) and standardized the design steps and components of the prompts.
Methods
We gathered a total of 174 participants from the DementiaBank screening and classified 70% of them into the training set and 30% of them into the test set. Only text dialogues were kept. Sentences were cleaned using a macro code, followed by a manual check. The prompt consisted of 5 main parts, including character setting, scoring system setting, indicator setting, output setting, and explanatory information setting. Three dimensions of variables from published studies were included: vocabulary (ie, word frequency and word ratio, phrase frequency and phrase ratio, and lexical complexity), syntax and grammar (ie, syntactic complexity and grammatical components), and semantics (ie, semantic density and semantic coherence). We used R 4.3.0. for the analysis of variables and diagnostic indicators.
Results
Three additional indicators related to the severity of MCI were incorporated into the final prompt for the model. These indicators were effective in discriminating between MCI and cognitively normal participants: tip-of-the-tongue phenomenon (P<.001), difficulty with complex ideas (P<.001), and memory issues (P<.001). The final GPT-4 model achieved a sensitivity of 0.8636, a specificity of 0.9487, and an area under the curve of 0.9062 on the training set; on the test set, the sensitivity, specificity, and area under the curve reached 0.7727, 0.8333, and 0.8030, respectively.
Conclusions
ChatGPT was effective in the primary screening of participants with possible MCI. Improved standardization of prompts by clinicians would also improve the performance of the model. It is important to note that ChatGPT is not a substitute for a clinician making a diagnosis.
Reference38 articles.
1. Alzheimer’s disease and related dementiasCenters for Disease Control and Prevention2023-04-26https://www.cdc.gov/aging/aginginfo/alzheimers.htm
2. Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015–2060) in adults aged ≥65 years
3. The State of US Health, 1990-2016
4. What is Alzheimer’s disease?Alzheimer’s Association2023-04-26https://alz.org/alzheimers-dementia/what-is-alzheimers
5. Linguistic Ability in Early Life and Cognitive Function and Alzheimer's Disease in Late Life
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献