Pre-training and ensembling based Alzheimer’s disease detection

Author:

Xu Fan,Zheng Qihang,Shi Jia,Yan Keyu,Wang Mingwen

Abstract

BACKGROUND: Alzheimer’s disease (AD) endangers the physical and mental health of the elderly, constituting one of the most crucial social challenges. Due to lack of effective AD intervention drugs, it is very important to diagnose AD in the early stage, especially in the Mild Cognitive Impairment (MCI) phase. OBJECTIVE: At present, an automatic classification technology is urgently needed to assist doctors in analyzing the status of the candidate patient. The artificial intelligence enhanced Alzheimer’s disease detection can reduce costs to detect Alzheimer’s disease. METHODS: In this paper, a novel pre-trained ensemble-based AD detection (PEADD) framework with three base learners (i.e., ResNet, VGG, and EfficientNet) for both the audio-based and PET (Positron Emission Tomography)-based AD detection is proposed under a unified image modality. Specifically, the effectiveness of context-enriched image modalities instead of the traditional speech modality (i.e., context-free audio matrix) for the audio-based AD detection, along with simple and efficient image denoising strategy has been inspected comprehensively. Meanwhile, the PET-based AD detection based on the denoised PET image has been described. Furthermore, different voting methods for applying an ensemble strategy (i.e., hard voting and soft voting) has been investigated in detail. RESULTS: The results showed that the classification accuracy was 92% and 99% on the audio-based and PET-based AD datasets, respectively. Our extensive experimental results demonstrate that our PEADD outperforms the state-of-the-art methods on both audio-based and PET-based AD datasets simultaneously. CONCLUSIONS: The network model can provide an objective basis for doctors to detect Alzheimer’s Disease.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alzheimer Disease Detection using Deep Learning;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3