Author:
Leamon Robert J.,McIntosh Scott W.,Title Alan M.
Abstract
The Sun’s variability is controlled by the progression and interaction of the magnetized systems that form the 22-year magnetic activity cycle (the “Hale Cycle”) as they march from their origin at ∼55° latitude to the equator, over ∼19 years. We will discuss the end point of that progression, dubbed “terminator” events, and our means of diagnosing them. In this paper we expand on the Extended Solar Cycle framework to construct a new solar activity “clock” which maps all solar magnetic activity onto a single normalized epoch based on the terminations of Hale Magnetic Cycles. Defining phase 0*2π on this clock as the Terminators, then solar polar field reversals occur at ∼ 0.2*2π, and the geomagnetically quiet intervals centered around solar minimum start at ∼ 0.6*2π and end at the terminator, thus lasting 40% of the cycle length. At this onset of quiescence, dubbed a “pre-terminator,” the Sun shows a radical reduction in active region complexity and, like the terminator events, is associated with the time when the solar radio flux crosses F10.7 = 90 sfu. We use the terminator-based clock to illustrate a range of phenomena that further emphasize the strong interaction of the global-scale magnetic systems of the Hale Cycle: the vast majority, 96%, of all X-flares happen between the Terminator and pre-Terminator. In addition to the X-rays from violent flares, rapid changes in the number of energetic photons—EUV spectral emission from a hot corona and the F10.7 solar radio flux—impinging on the atmosphere are predictable from the Terminator-normalized unit cycle, which has implications for improving the fidelity of atmospheric modelling.
Subject
Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献