Observations key to understanding solar cycles: a review

Author:

Martin Sara F.

Abstract

A paradigm shift is taking place in the conception of solar cycles. In the previous conception, the changing numbers of sunspots over intervals of 9–14 years have been regarded as the fundamental solar cycle although two average 11-year cycles were necessary to account for the complete magnetic cycle. In the revised picture, sunspots are a phase in the middle of two 22-year overlapping solar cycles that operate continuously with clock-like precision. More than 20 researchers have contributed to the initial research articles from 2014 through 2021 which are dramatically altering the perception of solar cycles. The two 22-year cycles overlap in time by 11 years. This overlap is coincidentally the same average duration as the sunspot phase in each 22-year cycle. This coincidence and the relative lack of knowledge of the large numbers of small active regions without sunspots is what led to the previous paradigm in which the 11-year sunspot phases were misinterpreted as a single fundamental solar cycle. The combination of the two 22-year solar cycles, with their large numbers of short-lived active regions and ephemeral active regions are now understood to be the fundamental cycle with the proposed name “The Hale Solar Cycle.” The two 22-year solar cycles each occupy separate but adjacent bands in latitude. The orientations of the majority of bipolar magnetic regions in the two adjacent bands differ from each other by ∼180°. Both bands continuously drift from higher to lower latitudes as has been known for sunspot cycles. However, the polarity reversal occurs at the start of each 22-year cycle and at higher latitudes than it does for the sunspot cycles. This paradigm shift in the concept of solar cycles has resulted in major reconsiderations of additional topics on solar cycles in this review. These are 1) the large role of ephemeral active regions in the origin of solar cycles, 2) the depth of the origin of active regions and sunspots, 3) the mechanisms of how areas of unipolar magnetic network migrate to the solar poles every 11 years, and 4) the nature of the polarity reversal in alternate 22-year cycles rather than 11-year cycles.

Publisher

Frontiers Media SA

Reference132 articles.

1. Variation of solar coronal Fe XIV 5303 Å emission during solar cycle 21, in solar and stellar coronal structure and dynamics;Altrock,1988

2. An 'extended solar cycle’ as observed in Fe XIV;Altrock;Sol. Phys.,1997

3. Formation of an extraordinarily long filament channel;Anderson,2005

4. The Sun’s polar magnetic field;Babcock;Astrophys. J.,1959

5. The Sun's magnetic field 1952-1954;Babcock;Astrophys. J.,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3